zeta functions for nonminimal operators.
نویسندگان
چکیده
We evaluate zeta-functions ζ(s) at s = 0 for invariant non-minimal 2nd-order vector and tensor operators defined on maximally symmetric even dimensional spaces. We decompose the operators into their irreducible parts and obtain their corresponding eigenvalues. Using these eigenvalues, we are able to explicitly calculate ζ(0) for the cases of Euclidean spaces and N -spheres. In the N -sphere case, we make use of the Euler-Maclaurin formula to develop asymptotic expansions for the required sums. The resulting ζ(0) values for dimensions 2 to 10 are given in the Appendix. 11.10.Kk Typeset using REVTEX [email protected] [email protected] 1
منابع مشابه
Dynamical Zeta Functions and Transfer Operators, Volume 49, Number 8
C ertain generating functions—encoding properties of objects like prime numbers, periodic orbits, ...—have received the name of zeta functions. They are useful in studying the statistical properties of the objects in question. Zeta functions have generally been associated with problems of arithmetic or algebra and tend to have common features: meromorphy, Euler product formula, functional equat...
متن کاملThe Ihara-Selberg zeta function for PGL3 and Hecke operators
A weak version of the Ihara formula is proved for zeta functions attached to quotients of the Bruhat-Tits building of PGL3. This formula expresses the zeta function in terms of Hecke-Operators. It is the first step towards an arithmetical interpretation of the combinatorially defined zeta function.
متن کاملThe Lerch zeta function IV. Hecke operators
This paper studies algebraic and analytic structures associated with the Lerch zeta function. It defines a family of two-variable Hecke operators {Tm : m ≥ 1} given by Tm(f )(a, c) = 1 m ∑m−1 k=0 f ( a+k m ,mc) acting on certain spaces of real-analytic functions, including Lerch zeta functions for various parameter values. The actions of various related operators on these function spaces are de...
متن کاملAdiabatic Limits of Eta and Zeta Functions of Elliptic Operators
We use the calculus of adiabatic pseudo-differential operators to study the adiabatic limit behavior of the eta and zeta functions of a differential operator δ constructed from an elliptic family of operators with base S. We show that the regularized values η(δt, 0) and tζ(δt, 0) have smooth limits as t → 0, and we identify the limits with the holonomy of the determinant bundle, respectively wi...
متن کاملOn the Singularities of the Zeta and Eta Functions of an Elliptic Operator
Let P be a selfadjoint elliptic operator of order m > 0 acting on the sections of a Hermitian vector bundle over a compact Riemannian manifold of dimension n. General arguments show that its zeta and eta functions may have poles only at points of the form s = k m , where k ranges over all non-zero integers ≤ n. In this paper, we construct elementary and explicit examples of perturbations of P w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. D, Particles and fields
دوره 52 8 شماره
صفحات -
تاریخ انتشار 1995